Algorithms and complexity

week 13

Topics covered

- Graphs and graph algorithms (review)
- Greedy algorithms
- Divide and conquer
- Dynamic programming
- Flow problems
- Reductions
- NP-completeness
- this is not a complete list

• Graphs

- \circ graph representations
- o graph traversals (BFS DFS)
- \circ directed graphs
- \circ topological sort
- Combinatorics and other background
 - o big Oh notation
 - \circ solving recurrence relations, the master theorem
 - sets and counting, combinations, length of representations
- Data structures
 - priority queues, sets (union-find for advanced)

- Greedy algorithms
 - \circ interval scheduling
 - \circ interval partitioning
 - \circ shortest paths
 - \circ minimum spanning trees
- Divide and conquer
 - \circ mergesort and counting inversions
 - \circ solving recurrences, the master theorem
 - closest pair of points (advanced)
 - Strassen's matrix multiplication algorithm

- Dynamic programming
 - \circ weighted interval scheduling
 - \circ memoization and recursion
 - \circ subset sums and knapsack problems
 - \circ sequence alignment
 - shortest paths (Bellman Ford)
 - \circ segmented least squares

Network flow

 \circ max flow and min cut

- flow value lemma, weak duality
- max flow and Ford Fulkerson (augmenting paths)
 - scaling for the Ford Fulkerson algorithm
- \circ applications of max flow
 - bipartite matching via max flow
 - edge disjoint paths
 - disconnecting a network
 - circulations with demands (and lower bounds)
 - survey design
 - project selection

• NP and intractability

- \circ reductions
- \circ P and NP, certificates and verification
- \circ NP-complete, NP-hard and NP-complete problems
 - list of NP-complete problems: vertex cover, independent set, 3SAT and satisfiability, set cover, hamiltonian cycle, longest path, traveling salesman problem, clique

 \circ co-NP (asymmetry of NP)

- dealing with intractability
 - \circ small vertex covers
 - \circ independent set on trees
 - \circ weighted independent sets on trees
 - randomized algorithm for global minimum cut (advanced)
 - o approximation algorithm for makespan scheduling (advanced)

and some advanced topics

- testing bipartiteness, 2-coloring
- the union find data structure
- closest pair of points
- sequence alignment in linear space
- finding negative cycles in a graph
- randomness, probabilistic analysis of algorithms
- processes accessing a database (contention resolution)
- randomized algorithm for global minimum cut (Karger's algorithm)
- randomized algorithm for MAX3SAT (tutorial)
- approximation algorithm for the traveling salesman problem

Marks and webCT and tutorial sessions

- all progressive marks will go on webCT
- please make sure you have a mark for every component you have submitted at the end of the semester (at the time of the exam)
- if there are any problems contact the unit coordinator
- tutorial sessions this week (week 13)
 - o no tutorials, but
 - tutor(s) will be available to answer any questions you might have
 - thursday <u>11am-12noon</u> and
 - thursday <u>2pm-3pm</u>
 - You can also have a look at your quiz 2 marking during that time

Assessment components

• assessment for this unit:

- 10% Assignment 1
- o 10% Quiz 1
- \circ 10% Assignment 2
- \circ 10% Quiz 2
- o 60% Final exam
- following the University/School of IT policy, you need at least 40% in the final exam and 50% overall to get a passing mark for this unit.

Final exam

- 2hours, five questions to answer, 2 pages of notes allowed
- each question is 20% of the exam
- Q1
 - o true false questions (similar to the quiz)
 - o wrong answers have negative marks, no answer ok
 o also multiple choice question
- Q2
 - short tracing questions, several short subquestions
- Q3
 - o algorithmic problems with relatively short answers
 - \circ several subquestions

Final exam

• Q4

- o algorithmic problems that require longer answers
- similar to the assignment and tutorial questions for example
- this is the "difficult one" (i think)
- Q5 normal stream only (COMP2007/5211)
 - \circ algorithmic problems mostly longer answers
 - o possibly a mix with tracing algorithms and short answers

Q6 advanced stream only (COMP2907)
 o algorithmic questions with longer answers

Examples of hard questions from previous years

- Prove that a new problem (defined in the question) is NPcomplete.
- Give a dynamic programming algorithms for the longest rising trend (part of assignment 2)
- Give a polynomial time algorithm for maxflow in networks with capacities on the vertices
- All tutorial hard questions are good examples as well

Hints

- there will be tracing question(s)
- there will be questions on general graph problems
- there are questions about reductions, NP-completeness and NP-hardness
- the exam usually has plenty of flow related questions

 for example you could be asked to design a greedy
 algorithm for a flow related problem
- you might get questions to describe how a certain algorithm that we have covered in the lectures (or tutorials) works
- the questions are chosen randomly from all the material
- the hard questions (in Q4) may also be "longer" to solve

Algorithmic units of study

• Some "algorithmic" units you might be interested in

- Algorithms for the life sciences bioinformatics (3rd year)
- Artificial Intelligence (3rd year)
- Computational geometry (honors)
- Information visualization, graph drawing (honors)
- Data mining
- Advanced topics (4th year / honours)
 - topics change from year to year. Possible topics that may appear in the future (depending on interest)
 - algorithmic game theory (2008)
 - approximation algorithms
 - computational complexity theory (2010)

good luck with all your exams